Serveur d'exploration sur les effecteurs de phytopathogènes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Juvenile Spider Mites Induce Salicylate Defenses, but Not Jasmonate Defenses, Unlike Adults.

Identifieur interne : 000118 ( Main/Exploration ); précédent : 000117; suivant : 000119

Juvenile Spider Mites Induce Salicylate Defenses, but Not Jasmonate Defenses, Unlike Adults.

Auteurs : Jie Liu [Pays-Bas, République populaire de Chine] ; Saioa Legarrea [Pays-Bas] ; Juan M. Alba [Pays-Bas] ; Lin Dong [Pays-Bas] ; Rachid Chafi [Pays-Bas] ; Steph B J. Menken [Pays-Bas] ; Merijn R. Kant [Pays-Bas]

Source :

RBID : pubmed:32754172

Abstract

When plants detect herbivores they strengthen their defenses. As a consequence, some herbivores evolved the means to suppress these defenses. Research on induction and suppression of plant defenses usually makes use of particular life stages of herbivores. Yet many herbivorous arthropods go through development cycles in which their successive stages have different characteristics and lifestyles. Here we investigated the interaction between tomato defenses and different herbivore developmental stages using two herbivorous spider mites, i.e., Tetranychus urticae of which the adult females induce defenses and T. evansi of which the adult females suppress defenses in Solanum lycopersicum (tomato). First, we monitored egg-to-adult developmental time on tomato wild type (WT) and the mutant defenseless-1 (def-1, unable to produce jasmonate-(JA)-defenses). Then we assessed expression of salivary effector genes (effector 28, 84, SHOT2b, and SHOT3b) in the consecutive spider mite life stages as well as adult males and females. Finally, we assessed the extent to which tomato plants upregulate JA- and salicylate-(SA)-defenses in response to the consecutive mite developmental stages and to the two sexes. The consecutive juvenile mite stages did not induce JA defenses and, accordingly, egg-to-adult development on WT and def-1 did not differ for either mite species. Their eggs however appeared to suppress the SA-response. In contrast, all the consecutive feeding stages upregulated SA-defenses with the strongest induction by T. urticae larvae. Expression of effector genes was higher in the later developmental stages. Comparing expression in adult males and females revealed a striking pattern: while expression of effector 84 and SHOT3b was higher in T. urticae females than in males, this was the opposite for T. evansi. We also observed T. urticae females to upregulate tomato defenses, while T. evansi females did not. In addition, of both species also the males did not upregulate defenses. Hence, we argue that mite ontogenetic niche shifts and stage-specific composition of salivary secreted proteins probably together determine the course and efficiency of induced tomato defenses.

DOI: 10.3389/fpls.2020.00980
PubMed: 32754172
PubMed Central: PMC7367147


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Juvenile Spider Mites Induce Salicylate Defenses, but Not Jasmonate Defenses, Unlike Adults.</title>
<author>
<name sortKey="Liu, Jie" sort="Liu, Jie" uniqKey="Liu J" first="Jie" last="Liu">Jie Liu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam</wicri:regionArea>
<placeName>
<settlement type="city">Amsterdam</settlement>
<region nuts="2" type="province">Hollande-Septentrionale</region>
</placeName>
<orgName type="university">Université d'Amsterdam</orgName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou</wicri:regionArea>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
<orgName type="university">Université de Zhejiang</orgName>
</affiliation>
</author>
<author>
<name sortKey="Legarrea, Saioa" sort="Legarrea, Saioa" uniqKey="Legarrea S" first="Saioa" last="Legarrea">Saioa Legarrea</name>
<affiliation wicri:level="4">
<nlm:affiliation>Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam</wicri:regionArea>
<placeName>
<settlement type="city">Amsterdam</settlement>
<region nuts="2" type="province">Hollande-Septentrionale</region>
</placeName>
<orgName type="university">Université d'Amsterdam</orgName>
</affiliation>
</author>
<author>
<name sortKey="Alba, Juan M" sort="Alba, Juan M" uniqKey="Alba J" first="Juan M" last="Alba">Juan M. Alba</name>
<affiliation wicri:level="4">
<nlm:affiliation>Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam</wicri:regionArea>
<placeName>
<settlement type="city">Amsterdam</settlement>
<region nuts="2" type="province">Hollande-Septentrionale</region>
</placeName>
<orgName type="university">Université d'Amsterdam</orgName>
</affiliation>
</author>
<author>
<name sortKey="Dong, Lin" sort="Dong, Lin" uniqKey="Dong L" first="Lin" last="Dong">Lin Dong</name>
<affiliation wicri:level="4">
<nlm:affiliation>Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam</wicri:regionArea>
<placeName>
<settlement type="city">Amsterdam</settlement>
<region nuts="2" type="province">Hollande-Septentrionale</region>
</placeName>
<orgName type="university">Université d'Amsterdam</orgName>
</affiliation>
</author>
<author>
<name sortKey="Chafi, Rachid" sort="Chafi, Rachid" uniqKey="Chafi R" first="Rachid" last="Chafi">Rachid Chafi</name>
<affiliation wicri:level="4">
<nlm:affiliation>Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam</wicri:regionArea>
<placeName>
<settlement type="city">Amsterdam</settlement>
<region nuts="2" type="province">Hollande-Septentrionale</region>
</placeName>
<orgName type="university">Université d'Amsterdam</orgName>
</affiliation>
</author>
<author>
<name sortKey="Menken, Steph B J" sort="Menken, Steph B J" uniqKey="Menken S" first="Steph B J" last="Menken">Steph B J. Menken</name>
<affiliation wicri:level="4">
<nlm:affiliation>Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam</wicri:regionArea>
<placeName>
<settlement type="city">Amsterdam</settlement>
<region nuts="2" type="province">Hollande-Septentrionale</region>
</placeName>
<orgName type="university">Université d'Amsterdam</orgName>
</affiliation>
</author>
<author>
<name sortKey="Kant, Merijn R" sort="Kant, Merijn R" uniqKey="Kant M" first="Merijn R" last="Kant">Merijn R. Kant</name>
<affiliation wicri:level="4">
<nlm:affiliation>Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam</wicri:regionArea>
<placeName>
<settlement type="city">Amsterdam</settlement>
<region nuts="2" type="province">Hollande-Septentrionale</region>
</placeName>
<orgName type="university">Université d'Amsterdam</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32754172</idno>
<idno type="pmid">32754172</idno>
<idno type="doi">10.3389/fpls.2020.00980</idno>
<idno type="pmc">PMC7367147</idno>
<idno type="wicri:Area/Main/Corpus">000162</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000162</idno>
<idno type="wicri:Area/Main/Curation">000162</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000162</idno>
<idno type="wicri:Area/Main/Exploration">000162</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Juvenile Spider Mites Induce Salicylate Defenses, but Not Jasmonate Defenses, Unlike Adults.</title>
<author>
<name sortKey="Liu, Jie" sort="Liu, Jie" uniqKey="Liu J" first="Jie" last="Liu">Jie Liu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam</wicri:regionArea>
<placeName>
<settlement type="city">Amsterdam</settlement>
<region nuts="2" type="province">Hollande-Septentrionale</region>
</placeName>
<orgName type="university">Université d'Amsterdam</orgName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou</wicri:regionArea>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
<orgName type="university">Université de Zhejiang</orgName>
</affiliation>
</author>
<author>
<name sortKey="Legarrea, Saioa" sort="Legarrea, Saioa" uniqKey="Legarrea S" first="Saioa" last="Legarrea">Saioa Legarrea</name>
<affiliation wicri:level="4">
<nlm:affiliation>Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam</wicri:regionArea>
<placeName>
<settlement type="city">Amsterdam</settlement>
<region nuts="2" type="province">Hollande-Septentrionale</region>
</placeName>
<orgName type="university">Université d'Amsterdam</orgName>
</affiliation>
</author>
<author>
<name sortKey="Alba, Juan M" sort="Alba, Juan M" uniqKey="Alba J" first="Juan M" last="Alba">Juan M. Alba</name>
<affiliation wicri:level="4">
<nlm:affiliation>Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam</wicri:regionArea>
<placeName>
<settlement type="city">Amsterdam</settlement>
<region nuts="2" type="province">Hollande-Septentrionale</region>
</placeName>
<orgName type="university">Université d'Amsterdam</orgName>
</affiliation>
</author>
<author>
<name sortKey="Dong, Lin" sort="Dong, Lin" uniqKey="Dong L" first="Lin" last="Dong">Lin Dong</name>
<affiliation wicri:level="4">
<nlm:affiliation>Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam</wicri:regionArea>
<placeName>
<settlement type="city">Amsterdam</settlement>
<region nuts="2" type="province">Hollande-Septentrionale</region>
</placeName>
<orgName type="university">Université d'Amsterdam</orgName>
</affiliation>
</author>
<author>
<name sortKey="Chafi, Rachid" sort="Chafi, Rachid" uniqKey="Chafi R" first="Rachid" last="Chafi">Rachid Chafi</name>
<affiliation wicri:level="4">
<nlm:affiliation>Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam</wicri:regionArea>
<placeName>
<settlement type="city">Amsterdam</settlement>
<region nuts="2" type="province">Hollande-Septentrionale</region>
</placeName>
<orgName type="university">Université d'Amsterdam</orgName>
</affiliation>
</author>
<author>
<name sortKey="Menken, Steph B J" sort="Menken, Steph B J" uniqKey="Menken S" first="Steph B J" last="Menken">Steph B J. Menken</name>
<affiliation wicri:level="4">
<nlm:affiliation>Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam</wicri:regionArea>
<placeName>
<settlement type="city">Amsterdam</settlement>
<region nuts="2" type="province">Hollande-Septentrionale</region>
</placeName>
<orgName type="university">Université d'Amsterdam</orgName>
</affiliation>
</author>
<author>
<name sortKey="Kant, Merijn R" sort="Kant, Merijn R" uniqKey="Kant M" first="Merijn R" last="Kant">Merijn R. Kant</name>
<affiliation wicri:level="4">
<nlm:affiliation>Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam</wicri:regionArea>
<placeName>
<settlement type="city">Amsterdam</settlement>
<region nuts="2" type="province">Hollande-Septentrionale</region>
</placeName>
<orgName type="university">Université d'Amsterdam</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">When plants detect herbivores they strengthen their defenses. As a consequence, some herbivores evolved the means to suppress these defenses. Research on induction and suppression of plant defenses usually makes use of particular life stages of herbivores. Yet many herbivorous arthropods go through development cycles in which their successive stages have different characteristics and lifestyles. Here we investigated the interaction between tomato defenses and different herbivore developmental stages using two herbivorous spider mites, i.e.,
<i>Tetranychus urticae</i>
of which the adult females induce defenses and
<i>T. evansi</i>
of which the adult females suppress defenses in
<i>Solanum lycopersicum</i>
(tomato). First, we monitored egg-to-adult developmental time on tomato wild type (WT) and the mutant
<i>defenseless-1 (def-1</i>
, unable to produce jasmonate-(JA)-defenses). Then we assessed expression of salivary effector genes (effector
<i>28</i>
,
<i>84, SHOT2b</i>
, and
<i>SHOT3b</i>
) in the consecutive spider mite life stages as well as adult males and females. Finally, we assessed the extent to which tomato plants upregulate JA- and salicylate-(SA)-defenses in response to the consecutive mite developmental stages and to the two sexes. The consecutive juvenile mite stages did not induce JA defenses and, accordingly, egg-to-adult development on WT and
<i>def-1</i>
did not differ for either mite species. Their eggs however appeared to suppress the SA-response. In contrast, all the consecutive feeding stages upregulated SA-defenses with the strongest induction by
<i>T. urticae</i>
larvae. Expression of effector genes was higher in the later developmental stages. Comparing expression in adult males and females revealed a striking pattern: while expression of effector
<i>84</i>
and
<i>SHOT3b</i>
was higher in
<i>T. urticae</i>
females than in males, this was the opposite for
<i>T. evansi</i>
. We also observed
<i>T. urticae</i>
females to upregulate tomato defenses, while
<i>T. evansi</i>
females did not. In addition, of both species also the males did not upregulate defenses. Hence, we argue that mite ontogenetic niche shifts and stage-specific composition of salivary secreted proteins probably together determine the course and efficiency of induced tomato defenses.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32754172</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Juvenile Spider Mites Induce Salicylate Defenses, but Not Jasmonate Defenses, Unlike Adults.</ArticleTitle>
<Pagination>
<MedlinePgn>980</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2020.00980</ELocationID>
<Abstract>
<AbstractText>When plants detect herbivores they strengthen their defenses. As a consequence, some herbivores evolved the means to suppress these defenses. Research on induction and suppression of plant defenses usually makes use of particular life stages of herbivores. Yet many herbivorous arthropods go through development cycles in which their successive stages have different characteristics and lifestyles. Here we investigated the interaction between tomato defenses and different herbivore developmental stages using two herbivorous spider mites, i.e.,
<i>Tetranychus urticae</i>
of which the adult females induce defenses and
<i>T. evansi</i>
of which the adult females suppress defenses in
<i>Solanum lycopersicum</i>
(tomato). First, we monitored egg-to-adult developmental time on tomato wild type (WT) and the mutant
<i>defenseless-1 (def-1</i>
, unable to produce jasmonate-(JA)-defenses). Then we assessed expression of salivary effector genes (effector
<i>28</i>
,
<i>84, SHOT2b</i>
, and
<i>SHOT3b</i>
) in the consecutive spider mite life stages as well as adult males and females. Finally, we assessed the extent to which tomato plants upregulate JA- and salicylate-(SA)-defenses in response to the consecutive mite developmental stages and to the two sexes. The consecutive juvenile mite stages did not induce JA defenses and, accordingly, egg-to-adult development on WT and
<i>def-1</i>
did not differ for either mite species. Their eggs however appeared to suppress the SA-response. In contrast, all the consecutive feeding stages upregulated SA-defenses with the strongest induction by
<i>T. urticae</i>
larvae. Expression of effector genes was higher in the later developmental stages. Comparing expression in adult males and females revealed a striking pattern: while expression of effector
<i>84</i>
and
<i>SHOT3b</i>
was higher in
<i>T. urticae</i>
females than in males, this was the opposite for
<i>T. evansi</i>
. We also observed
<i>T. urticae</i>
females to upregulate tomato defenses, while
<i>T. evansi</i>
females did not. In addition, of both species also the males did not upregulate defenses. Hence, we argue that mite ontogenetic niche shifts and stage-specific composition of salivary secreted proteins probably together determine the course and efficiency of induced tomato defenses.</AbstractText>
<CopyrightInformation>Copyright © 2020 Liu, Legarrea, Alba, Dong, Chafi, Menken and Kant.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Jie</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Legarrea</LastName>
<ForeName>Saioa</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Alba</LastName>
<ForeName>Juan M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dong</LastName>
<ForeName>Lin</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chafi</LastName>
<ForeName>Rachid</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Menken</LastName>
<ForeName>Steph B J</ForeName>
<Initials>SBJ</Initials>
<AffiliationInfo>
<Affiliation>Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kant</LastName>
<ForeName>Merijn R</ForeName>
<Initials>MR</Initials>
<AffiliationInfo>
<Affiliation>Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>07</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">effector</Keyword>
<Keyword MajorTopicYN="N">induction</Keyword>
<Keyword MajorTopicYN="N">life cycle</Keyword>
<Keyword MajorTopicYN="N">ontogenetic niche shift</Keyword>
<Keyword MajorTopicYN="N">plant defense</Keyword>
<Keyword MajorTopicYN="N">spider mite</Keyword>
<Keyword MajorTopicYN="N">suppression</Keyword>
<Keyword MajorTopicYN="N">tomato</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>03</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>06</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32754172</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2020.00980</ArticleId>
<ArticleId IdType="pmc">PMC7367147</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Plant Biol. 2016 Aug;32:77-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27421107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Feb;143(2):866-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17189328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2017 Oct 3;12(10):e1370526</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28857667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Mar 30;10(3):e0120833</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25822495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Sep;130(1):494-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1989 Dec;81(4):559-565</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28312654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jan;140(1):249-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16377744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2003 Mar;62(6):997-1008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12590126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1999 Aug;120(3):437-445</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28308020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2018 Oct 2;8(1):14687</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30279530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Feb;125(2):1074-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11161062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Sep 11;9:1206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30271412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 May;135(1):483-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15122016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Mar 16;291(5511):2104-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11256409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 May 23;97(11):6218-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10811915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Jan;164(1):384-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24285850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Appl Acarol. 2013 Jul;60(3):321-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23238959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Prod Rep. 2012 Nov;29(11):1288-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22918379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Jul 30;9:1057</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30105039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Econ Entomol. 2002 Oct;95(5):952-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12403421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Jun;214(4):1688-1701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28386959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Nov 23;479(7374):487-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22113690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Sep 29;6:794</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26483811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2005;43:205-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16078883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2017 Jan 18;18(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28106771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2002;53:299-328</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12221978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Jan;205(2):828-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25297722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 May;17(5):260-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22498450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2016 Apr;86(2):119-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26946468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(8):e23757</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21887311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Appl Acarol. 2013 Feb;59(1-2):43-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22824945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Jul 27;7:1105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27512397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Dec;97(4):1512-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Mar;137(3):1160-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15728342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Biol. 2002 Feb;205(Pt 4):455-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11893759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Insect Biochem Mol Biol. 2010 Aug;40(8):563-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20685616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2019 Apr;179(4):1298-1314</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30765478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Apr 11;416(6881):599-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11948341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2018 Oct 20;19(10):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30347842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Q Rev Biol. 1954 Jun;29(2):103-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13177850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2013 Aug;238(2):247-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23748628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2016 Nov;252:300-310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27717467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2008 May;156(2):313-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18301924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2016 Dec;15(12):3594-3613</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27703040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biol Sci. 2016 Aug 08;12(9):1129-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27570487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2005;43:491-521</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16078893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Insect Physiol. 2015 Jul;78:69-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25960286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2011 Mar;14(3):229-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21299823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Growth Regul. 2000 Jun;19(2):195-216</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11038228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2016 Aug;32:9-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27267276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Jun 1;62(5):876-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20230509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:41-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18031220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2018 Jan;31(1):112-124</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29094648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Insect Sci. 2014 Feb;21(1):47-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23956152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2019 Oct;224(2):875-885</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30903698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2019 Feb;19(4):e1800302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30520223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):E113-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23248300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 Jul 12;12(7):e0180654</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28704448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2017 May;245(5):993-1007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28175992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2015 Jun;115(7):1015-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26019168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Entomol. 2015 Jan 7;60:493-515</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25341089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2008 Feb 22;275(1633):443-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18055390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Aug;135(4):2025-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15310835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Econ Entomol. 2003 Dec;96(6):1626-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14977097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biol. 2014 Nov 18;12:98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25403155</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Pays-Bas</li>
<li>République populaire de Chine</li>
</country>
<region>
<li>Hollande-Septentrionale</li>
<li>Zhejiang</li>
</region>
<settlement>
<li>Amsterdam</li>
<li>Hangzhou</li>
</settlement>
<orgName>
<li>Université d'Amsterdam</li>
<li>Université de Zhejiang</li>
</orgName>
</list>
<tree>
<country name="Pays-Bas">
<region name="Hollande-Septentrionale">
<name sortKey="Liu, Jie" sort="Liu, Jie" uniqKey="Liu J" first="Jie" last="Liu">Jie Liu</name>
</region>
<name sortKey="Alba, Juan M" sort="Alba, Juan M" uniqKey="Alba J" first="Juan M" last="Alba">Juan M. Alba</name>
<name sortKey="Chafi, Rachid" sort="Chafi, Rachid" uniqKey="Chafi R" first="Rachid" last="Chafi">Rachid Chafi</name>
<name sortKey="Dong, Lin" sort="Dong, Lin" uniqKey="Dong L" first="Lin" last="Dong">Lin Dong</name>
<name sortKey="Kant, Merijn R" sort="Kant, Merijn R" uniqKey="Kant M" first="Merijn R" last="Kant">Merijn R. Kant</name>
<name sortKey="Legarrea, Saioa" sort="Legarrea, Saioa" uniqKey="Legarrea S" first="Saioa" last="Legarrea">Saioa Legarrea</name>
<name sortKey="Menken, Steph B J" sort="Menken, Steph B J" uniqKey="Menken S" first="Steph B J" last="Menken">Steph B J. Menken</name>
</country>
<country name="République populaire de Chine">
<region name="Zhejiang">
<name sortKey="Liu, Jie" sort="Liu, Jie" uniqKey="Liu J" first="Jie" last="Liu">Jie Liu</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantPathoEffV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000118 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000118 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantPathoEffV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32754172
   |texte=   Juvenile Spider Mites Induce Salicylate Defenses, but Not Jasmonate Defenses, Unlike Adults.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32754172" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantPathoEffV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 16:00:34 2020. Site generation: Sat Nov 21 16:01:01 2020